個(gè)人簡介:
李丹,副教授,碩士生導(dǎo)師,2021年2月入選必贏3003no1線路檢測中心百人計(jì)劃青年學(xué)術(shù)骨干,加入必贏3003no1線路檢測中心。2018年至2021年于新加坡國立大學(xué)擔(dān)任研究員,從事博士后研究工作。2013年至2017年就讀于新加坡南洋理工大學(xué),受新加坡與加州大學(xué)伯克利分校聯(lián)合項(xiàng)目資助,獲得博士學(xué)位。2008年至2012年就讀于電子科技大學(xué),獲得學(xué)士學(xué)位。主要從事信息物理融合系統(tǒng),工業(yè)互聯(lián)網(wǎng),預(yù)測性維護(hù),時(shí)序數(shù)據(jù)分析,大模型垂域應(yīng)用等方面的研究。目前于IEEE TII、IEEE TASE、Energy Build. ICDE等國際著名期刊和會(huì)議上發(fā)表20余篇論文。
研究與招生:
包括但不限于統(tǒng)計(jì)學(xué)習(xí)方法(Statistical Learning Methods), 數(shù)學(xué)建模(Mathematical Modeling),數(shù)據(jù)挖掘(Data Mining), 異常檢測與故障診斷(Anomaly Detection and Fault Diagnosis),序列預(yù)測/數(shù)據(jù)生成(Sequence prediction/generation),表征學(xué)習(xí)(Representation Learning),遷移學(xué)習(xí)(Transfer Learning),數(shù)據(jù)質(zhì)量控制與評估(Data Quality and Valuation),數(shù)據(jù)轉(zhuǎn)化與隱私保護(hù)(Data Transformation and Privacy Protection)等研究方向。
課題組為科研表現(xiàn)優(yōu)異的同學(xué)提供多種形式的海內(nèi)外高校學(xué)術(shù)交流訪問和深造機(jī)會(huì),為優(yōu)秀碩士生提供碩轉(zhuǎn)博銜接培養(yǎng)機(jī)會(huì)。
歡迎有意攻讀必贏3003no1線路檢測中心碩士/博士研究生的同學(xué)與我聯(lián)系!歡迎有意來必贏3003no1線路檢測中心做博士后的同學(xué)與我聯(lián)系!
歡迎優(yōu)秀的本科生加入我的科研小組!
郵箱:lidan263艾特mail.sysu.edu.cn
電話:0756-3661004
學(xué)術(shù)服務(wù):
Mathematics | 學(xué)術(shù)期刊 | Guest Editor
IICSOC2023 | 學(xué)術(shù)會(huì)議 | Area Chair (Focus Area 2: Big Data Analytics for Services and as-a-Service)
ICSS2022 | 學(xué)術(shù)會(huì)議 | PC Co-chair
ACM member
IEEE member
Technical Reviewer: IEEE TII, IEEE TASE, Energy Build., Build. Environ., RELIAB ENG SYST SAFE, IEEE Commun. Lett., ACM SIGKDD, AAAI, IJCAI, PKDD, ICSOC等國際著名期刊和會(huì)議。
科研項(xiàng)目:
基于信息物理融合系統(tǒng)的多變量異常檢測方法研究——廣東省自然科學(xué)基金-面上項(xiàng)目 (主持人)
“Singapore-Berkeley Building Efficiency and Sustainability in the Tropics (SinBerBEST)”–新加坡政府與加州大學(xué)伯克利分校聯(lián)合研究機(jī)構(gòu)(參與人)
“AI Singapore 100 EXPERIMENTS R&D” —新加坡國家研究基金(NRF)項(xiàng)目(主要參與人)
“Cybersecurity R&D Consortium Grant (CRDCG)” —新加坡政府網(wǎng)絡(luò)安全(NCR)項(xiàng)目(主要參與人)
主要作品:
【期刊文章】
- D. Li, Y. Zhou, G. Hu, and C. J. Spanos, “Handling Incomplete Sensor Measurements in Fault Detection and Diagnosis for Building HVAC Systems”, IEEE Transactions on Automation Science and Engineering. (中科院一區(qū))
- D. Li, Y. Zhou, G. Hu, and C. J. Spanos, “Identifying Unseen Faults by Incorporating Expert Knowledge with Data”, IEEE Transactions on Automation Science and Engineering, (中科院一區(qū))
- D. Li, Y. Zhou, G. Hu, and C. J. Spanos, “Optimal Sensor Configuration and Feature Selection for AHU Fault Detection and Diagnosis”, IEEE Transactions on Industrial Informatics. (中科院一區(qū))
- D. Li, Y. Zhou, G. Hu, and C. J. Spanos, “Fault detection and diagnosis for building cooling system with a tree-structured learning method”, Energy and Buildings. (中科院二區(qū), 能源與建筑領(lǐng)域頂刊)
- D. Li, G. Hu, and C. J. Spanos, “A data-driven strategy for detection and diagnosis of building chiller faults using linear discriminant analysis”, Energy and Buildings. (中科院二區(qū), 能源與建筑領(lǐng)域頂刊)
- R. Jia, B. Jin, M. Jin, Y. Zhou, I. C. Konstantakopoulos, H. Zou, J. Kim, D. Li, W. Gu, R. Arghandeh, P. Nuzzo, S. Schiavon, A. L. Sangiovanni-Vincentelli, C. J. Spanos, “Design Automation for Smart Building Systems,” Proceedings of the IEEE. (中科院一區(qū))
【會(huì)議文章】
- G. Tu, D. Li*, S. Ng, Z. Zheng, "GLA-DA: Global-Local Alignment Domain Adaptation for Multivariate Time Series", The 29th International Conference on Database Systems for Advanced Applications, 2023. (CCF-B)
- R. Hu, D. Li*, S. Ng, Z. Zheng, “CB-GAN: Generate Sensitive Data with a Convolutional Bidirectional Generative Adversarial Networks”, The 28th International Conference on Database Systems for Advanced Applications, 2023. (CCF-B)
- P. Qi, D. Li*, and S. Ng. "MAD-SGCN: Multivariate Anomaly Detection with Self-learning Graph Convolutional Networks." In 2022 IEEE 38th International Conference on Data Engineering (ICDE), pp. 1232-1244. IEEE, 2022. (CCF-A)
- D. Li, H. Liu, and S. Ng. "VC-GAN: Classifying Vessel Types by Maritime Trajectories using Generative Adversarial Networks." In 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI), pp. 923-928. IEEE, 2020.
- D. Li, D. Chen, B. Jin, L. Shi, J. Goh, S. Ng, “MAD-GAN: Multivariate Anomaly Detection for Time Series Data with Generative Adversarial Networks”, The 28th International Conference on Artificial Neural Networks, 2019.
個(gè)人自述:
做學(xué)術(shù)十余年,歸來仍是青椒,我沒有值得一提的title和榮譽(yù),但我十分熱愛自己所從事的研究工作。
十余年前,我剛開始接觸科研的時(shí)候,我的第一位導(dǎo)師告訴我“文章千古事,得失寸心知”。
學(xué)術(shù)的路看似熱鬧實(shí)則孤獨(dú),我是一個(gè)慢熱的人,性格急躁的同學(xué)可能不太適合與我合作。
也許終有一天我們需要為了生存委屈求全,但我希望,至少在我們合作期間,你我都是為了理想與熱愛而奮斗。
江湖之大,愿,師徒一心,同去同歸!